
PseudoBlocks: A Block-Based Gameboard and Interactive
Sandbox for Constructing Pseudocode

Liu Jiang, Jared Wolens, Harry Gamble
Stanford University

450 Serra Mall
Stanford, CA

{liujiang, jwolens, hgamble}@stanford.edu

ABSTRACT
Metacognition is a key tenet of self-regulated learning. We in-
troduce Pseudoblocks, a block-based gameboard accompanied
by an interactive sandbox. Learners organize pre-fabricated
physical blocks representing set actions to construct individual
lines of pseudocode that form an outline to the game Brick
Breaker. By mapping high-level block-based visual code to a
more detailed text-based representation, Pseudoblocks helps
learners transition from beginning to intermediate program-
ming. Our approach prompts a process of reflection whereby
students engage and disengage with their code to consider the
holistic construction of their programming projects.

ACM Classification Keywords
H.5.m Information interfaces and presentation (e.g., HCI):
Miscellaneous

Author Keywords
Metacognition; pseudocode; block-based programming;
tangible user interface; algorithmic planning; design; learning.

1.INTRODUCTION
We present Pseudoblocks, a block-based gameboard coupled
with an interactive sandbox that aims to solve three challenges
that novice programmers face. Firstly, novice programmers
have difficulty transitioning from visual programming
languages like Scratch to more powerful text-based pro-
gramming languages like Java. Pseudoblocks addresses this
by mapping between high-level blocked-based code and a
more detailed text-based representation. Secondly, novice
programmers often do not participate in the first two stages
of writing a program, analyzing the problem and designing a
solution plan), thereby resulting in bugs in their code. Thus,
Pseudoblocks focuses on the planning process that precedes
programming, specifically the construction of pseudocode,
as success or failure in this stage affects the subsequent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI’14, April 26–May 1, 2014, Toronto, Canada.
Copyright © 2014 ACM ISBN/14/04...$15.00.
DOI string from ACM form confirmation

steps of implementing, testing, and debugging an algorithm
[5]. Thirdly, existing block-based programming tools for
novices are often pure software and do not incorporate
features that inspire reflection. In contrast, Pseudoblocks has
both digital and physical elements and leverages tactility as
a means of fostering learners’ engagement with metacognition.

Through Pseudoblocks, learners build a pseudocode
outline to the game Brick Breaker. Pseudocode methods are
constructed by arranging pre-fabricated physical blocks, each
representing a control structure, variable, or action, in three
templates on the gameboard. The three templates increase
in difficulty such that the learner forms basic individual
functions in the first template, builds upon those functions and
incorporates control structures in the second, and completes
the whole pseudocode program in the third. As each block
is placed on the gameboard, a more detailed text-based
representation of the block’s pseudocode label is generated in
real-time in the interactive sandbox. Pseudoblocks encourages
iteration by alerting learners when their block arrangements
contain gross structural errors, thus minimizing debugging
during the later stages of programming implementation. Once
satisfied with their pseudocode, learners can then move to the
provided starter code and utilize the pseudocode outline as a
guide to programming their Brick Breaker project.

The three learning goals of Pseudoblocks are to tran-
sition learners from visual to text-based programming
languages, make pseudocode an integral part of programming,
and concretize the problem analysis and algorithmic planning
process that precedes programming. By emphasizing the
metacognitive process of solving computing problems
rather than their solutions, Pseudoblocks encourages ac-
tive experimentation, reflective observation, and abstract
conceptualization [17].

2. BACKGROUND
Metacognition, a key tenet of self-regulated learning,
increases content understanding of problem representation
and facilitates greater transfer of problem solving skills
[9, 13]. Previous studies have shown that whereas experts
demonstrate metacognitive knowledge of the program task
and possess ideal working strategies, novice programmers
practice little advance planning and have opportunistic styles

Figure 1. An overview of the PseudoBlocks gameboard. Gamepieces are
pictured neighboring their slots for insertion.

of debugging [6, 23]. Pseudoblocks aims to bridge this gap
by enabling novices to physically engage with metacog-
nition and reflect on the holistic construction of their programs.

Pseudoblocks marries the theories of Constructionism
and Constructivism. The model of learning is consistent
with Constructionism as the learner consciously constructs
externalized arrangements of blocks that give insight to
her understanding of structuring pseudocode [1, 16]. In
line with Constructivism, the cognizing learner actively
reevaluates her schemata of how individual functions operate
and how the program executes as a cohesive whole when
she organizes and reorganizes the blocks [1, 22]. The
learner’s knowledge of functions, control structures, and
decomposition are not just grounded in the specific context
of Brick Breaker and can be extrapolated as more general-
ized principles that can be applied to any programming project.

Technologies that foster metacognition in novice pro-
grammers have existed since the 1980’s. One of the earliest
technologies was "Intelligent Tutoring Systems" (ITS), which
were shown to improve student performance [3]. ProPL,
an ITS focused on teaching programming, used dialogue
to help novice programmers solve decomposition problems
[11]. While ITS systems prompt planning and reflection,
their tutoring-first tactics risk over-scaffolding the process
of acquiring problem solving skills and may prevent novice
programmers from independently generating solutions.

Another class of technologies which encourage metacognition
are debuggers, which fall into one of two categories: static or
dynamic [7]. While a static debugger analyzes code for syntax
or logic errors, dynamic debuggers enable developers to
control the execution of code and stop it at chosen breakpoints
to examine highly localized behaviors [7]. However, static
debuggers (e.g. Findbugs) are often analogous to spellcheck
and provide the user with few learning opportunities to
reflect whereas dynamic debuggers (e.g. gdb) may engage

a user’s critical reasoning skills but are inaccessible to
novice programmers [7]. Pseudoblocks fills the gap between
ITS and debuggers by affording novice programmers the
physical experience of planning their code via the medium of
pseudocode blocks.

Planning algorithmic design is an essential precursor
to programming. Literature that investigates learners’ perfor-
mance under different programming preparation environments
often compare graphical representations with pseudocode.
In contrast to graphical representations like flowcharts,
pseudocode accommodates the creation of complex programs
by standardizing and simplifying the process of defining a
complicated problem and determining the sequence of steps
needed to solve it [11]. Graphical notations also lack the
syntactical elements required to accurately represent and
encapsulate the four computational concepts of sequence,
iteration, selection, and recursion [18]. Because the ultimate
desired end product of programming is a literate program,
the textual nature of pseudocode makes it more appropriate
than graphical representations for Pseudoblocks’ target
population of learners, who are transitioning from beginning
to intermediate programming.

At the heart of Pseudoblocks’s design is pseudocode,
which serves as a high-level algorithmic description of
a program. Pseudoblocks assists not only the design of
algorithms but also the process of debugging, especially for
programs that are large or complex. Because writing pseu-
docode results in better code, Pseudoblocks guides learners
in building a pseudocode outline, thereby ensuring that they
metacognitively engage in designing an algorithmic structure
for their code [15]. In omitting programming languages’ strict
syntax, which beginner programmers often find challenging to
master, Pseudoblocks provides an opportunity for learners to
focus exclusively on the algorithmic logic of their pseudocode
without having to acquire complex symbolic notation systems
[3, 19, 24].

Pseudoblocks consists of real-world blocks that the
learner organizes and structures into pseudocode. The benefits
of physical programming environments to student learning
of abstract concepts have been well-explored. As a specific
example, Kwon (2012) discovered that controlling physical
robots with tangible systems had a greater influence on
learners’ algorithmic thinking than their virtual counterparts
[9]. One of the limitations of previous learning tools utilizing
pseudocode is that they are purely virtual [4, 15, 18, 19].
We posit that the concrete existence of hardware blocks, as
compared to software blocks, garners greater attentiveness
from the learner. By connecting physical blocks, learners can
better visualize how functions interact with each other and
within the broader program.

Another feature that Pseudoblocks leverages is block-
based programming, which has been shown to both increase
novice students’ interest in programming and maintain the
motivation of more experienced students [13]. Despite
the existence of block-based visual programming tools

Figure 2. Interactive sandbox that generates real-time pseudocode em-
bedded with pre-fabricated template functions

like Scratch and App Inventor, such tools do not facilitate
the creation of pseudocode or the planning that precedes
programming, nor do they include reflective or monitoring
features like annotations. Via fiducials, Pseudoblocks creates
a direct one-to-one mapping between block-based visual code
and text-based pseudocode, a gap identified in observations
of Scratch [7]. Because the learner’s goal is to assemble
the blocks into the correct ordering of pseudocode, our tool
is both a means of reflection for the learner as well as an
embedding of the learner’s reflection.

3. DESIGN

3.1. Features and Affordances
Pseudoblocks possesses a number of design features and
affordances. Firstly, Pseudoblocks gamifies the act of creating
pseudocode by adopting the cultural forms of the gameboard
as well as the MatrixâĂŹs black-and-green coding scheme,
which is associated with the advent of the digital age. The
pre-marked spaces on the gameboard imply that a skillful
strategy is required to determine the correct arrangement
of blocks. Secondly, Psudoblocks leverages a block-based
design that compiles linearly, similar to the manner in which
code executes. Specifically, Pseudoblocks creates a direct
mapping between higher level visual pseudocode and more
detailed text-based pseudocode, which other block-based
programming tools like Scratch do not afford. Furthermore,
Pseudoblocks bridges the virtual with the physical world by
effectively converting hardware pseudocode into a software
representation. Furthermore, the tactile physicality of Pseu-
doblocks enables learners to better visualize how functions
interact within the broader program while encouraging
learners to more attentively arrange their blocks. The three
types of blocks - control structures (if/for/while), variables,
and functions - cluster sets of actions into categorical
definitions. Likewise, in blackbloxing the syntax of Java,
Pseudoblocks enables learners to focus on algorithmic design
and not have to worry about symbolic notation.

The real-time generation of textual pseudocode coupled
with the live feedback further the learning goal of metacog-
nitive reflection. Pseudoblocks alerts learners when their
pseudocode deviates heavily from the correct pseudocode

Figure 3. The three types of PseudoBlocks that help users chunk and
cluster discrete actions.

outline, thus surfacing algorithmic design problems during
this planning phase and minimizing debugging in later stages
of programming. Rather than simply generating a static file of
textual pseudocode when the learner has finished arranging all
blocks, feedback is given as each block is placed. The learner
can thus step back and challenge her schemata of how an
individual function operates or how the program executes as a
whole before placing the next block. As a result, the learner is
able to engage in consistent reflection and avoid potentially
overwhelming and deflating moments of signficiant error. In
leaving room for learners to make minor errors, Pseudoblocks,
in the spirit of critical pedagogy, acts less as a teacher that
disseminates knowledge and analyzes performance and more
as a collaborative, dialogic partner in the learning process.

Pseudoblocks has a low floor, wide walls, and a high
ceiling. The walls are wide because learners can explore
roughly 41! possible pathways to the solution. While there is
one correct arrangement of the blocks, a high ceiling exists
due to the provided Java environment and starter code, which
enable learners to work on more sophisticated projects with
near limitless potential. The scaffolding of Pseudoblocks
creates a low floor and provides novice programmers with
easy ways to get started. The board is structured like a
lesson plan in that difficulty of pseudocode construction
increases from the left template to the right, and successful
completion of each template prepares learners for the one
that subsequently follows. Similar to the step-by-step manner
in which programs are constructed, the learner sequentially
builds upon her pseudocode methods. The first template
promotes the concept of creating standalone functions, the
second requires merging functional blocks with control
structures, and the final template explores decomposition and
the construction of the pseudocode outline in its entirety.

3.2. Technical Construction
Pseudoblocks consists of an instructional guide, a Brick
Breaker starter code file, a gameboard, blocks, a compiler,
and an interactive sandbox for textual pseudocode generation.
The instructional guide introduces learners to the technical
affordances of Pseudoblocks and the high-level methods of
Brick Breaker that they are expected to construct pseudocode
for. Made of 3mm plywood, the lasercut gameboard consists
of three templates and rests on top of tempered glass in a
wooden frame approximately 2.5ft off the ground. The silver
functional and variable blocks and the blue conditional blocks
were modeled in SketchUp and 3D printed out of polylactic
acid (PLA) using Cura software. Each block is tagged with

a reacTIVision fiducial and labeled with a line of high-level
pseudocode that is associated with a distinct chunk of more
detailed pseudocode. The blocks are placed by the learner
in 1.05" x 1.05" slots in the three templates in order to form
pseudocode methods. Conditionals and control structures are
specifically constructed by merging L-shaped control state-
ment blocks with smaller variable blocks; Pseudoblocks reads
this combined structure as one action sequence. Processing,
via the Logitech C922 webcam, uses a linear compilation
structure that maps between the position of each block on the
gameboard and the corresponding coordinate within the inter-
active sandbox. When a block is placed on the gameboard,
TUIO detects its fiducial ID and generates a more detailed
textual representation of the blockâĂŹs pseudocode label in
real time in the sandbox. Because each fiducial has a set of
fiducials that explicitly cannot follow, the compiler is able
to detect sets of âĂIJimpossibleâĂİ block arrangements and
alerts the user when errors exist. Once the learner structures
all blocks in a template, she can manually âĂIJrunâĂİ her
pseudocode, at which point each fiducial set is loaded onto
a stack and popped off one-by-one. After achieving the cor-
rect block arrangement, the learner can move to the provided
Eclipse starter code file and use the text-based pseudocode
outline as a guide to programming Brick Breaker.

4. EVALUATION
We produced the current version of Pseudoblocks after several
rounds of iterative development and user testing. We collected
a variety of data from the user studies, including field notes,
photos, and video and audio recordings.

4.1. Design Iterations
Between design iterations, we conducted user tests with novice
programmers, Stanford d.school students, and Computer Sci-
ence professors. We then made the following changes to our
design:

Reorganized the gameboard.
Users noted that the gameboard felt "cluttered" and that the
templates seemed "unrelated to each other" and involved the
completion of "disparate tasks." To address this feedback,
we then restructured the gameboard such that the templates
cohesively build upon each other and that the difficulty of
pseudocode construction increases from left to right.

Increased the block size.
Previously, the size of our blocks was 0.5" by 0.5" but sev-
eral users commented that they wanted to be able to "feel the
blocks in [their] hands." We therefore increased the block size
to 1" x 1" in order emphasize the tactile physicality of Pseud-
blocks. With the larger block size, learners can better visualize
how functions interact within the broader program and are
encouraged to arrange the blocks with more attentiveness.

Simplified the compiler to a linear design.
The compiler previously utilized a recursive tree structure
and attempted to create a new grammar. Users noted that the
compiler felt "convoluted." We realized that a tree structure
was unnecessary and nonadditive to our learning goals. After
much thought, we opted for a sequential design, which is more
simple and mirrors the linear style in which code executes.

Figure 4. User tester completing the end of Task 3 arranging the final
configuration of blocks.

Generated textual pseudocode in real-time.
In an earlier version of Pseudoblocks, the only feedback came
in the form of a static pdf file of the textual pseudocode,
which was created once the learner completed her block ar-
rangements. Users who received files with numerous mis-
takes highlighted commented that they felt "deflated" and
"overwhelmed." They also noted that did not know "where to
start debugging" and could not determine "which errors were
more high priority than others." We thus strove to make Pseu-
doblocks seem less like a summative assessment that tests for
minute errors and more like a collaborative partner through-
out the planning process. We accomplished this by generating
pseudocode in real-time as each block is placed. Thus, learners
can constantly observe and reflect on the effects of changing
block placements on the textual pseudocode itself. This live
render feature can also challenge learners’ schemata of how
individual functions operate and how a program executes as a
whole.

5. FINAL DESIGN FINDINGS

6. CONCLUSION & FUTURE WORK
Preliminary results point to the success of Pseudoblocks in
helping novice programmers engage in the planning process
of creating pseudocode, reflect metacognitively, and transition
from visual to text-based programming languages. However,
there are notable opportunities for future work. The next iter-
ation can enable students to construct their own pseudocode
labels. Furthermore, the live feedback feature of the interac-
tive sandbox can be extended such that future Pseudoblocks
learners can visualize the actions of functions as they create
them. Pseudoblocks currently targets novice programmers
who program individually, but user testing can be conducted
with more diverse populations and separate versions can be
created for intermediate or advanced programmers, pair pro-
grammers, and classroom or lecture environments. Ultimately,
Pseudoblocks can expand beyond Brick Breaker and be made
project-agnostic.

7. ACKNOWLEDGMENTS
We thank all the Beyond Bits and Atoms staff, and Paulo
Blikstein, for supporting and aiding our research. Thank you
to all participants of our user research and those that provided
valuable feedback towards our design iteration.

REFERENCES
[1] Ackermann, E. (2001). Piaget’s constructivism, Papert’s
constructionism: What’s the difference. Future of learning
group publication, 5(3), 438.

[2] Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pel-
letier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4 (2), 167-207.

[3] Brusilovsky, P., Calabrese,E., Hvorecky,J., Kouchnirenko,
A. and Miller, P. (1997), Mini-languages: a way to learn
programming principles, International Journal of Education
and Information Technologies, 2 (1), pp. 65-83.

[4] Crews, T. and Ziegler, U. (1998), The flowchart interpreter
for introductory programming courses, Proceedings of FIE
’98, pp. 307-312.

[5] Etelåpelto, A. (1993). Metacognition and the expertise of
computer program comprehension. Scandinavian Journal of
Educational Research, 37(3), 243-254.

[6] Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Si-
mon, B., and Zander, C. (2010). Debugging From the Student
Perspective, IEEE Transactions on Education, 53(3), 390-396.

[7] Grover, S., Pea, R., & Cooper, S. (2015). Designing for
deeper learning in a blended computer science course for
middle school students. Computer Science Education, 25(2),
199-237

[8] Howard, B. C., McGee, S., Shia, R., & Hong, N. S.
(2001). Computer-based science inquiry: How components of
metacognitive self-regulation affect problem-solving

[9] Kwon, D., Kim, H., Shim, J., & Lee, W. (2012). Algorith-
mic bricks: A tangible robot programming tool for elementary
school students. IEEE Transactions on Education, 55(4), 474-
479.

[10] Lane, C. H., & VanLehn, K. (2007). Teaching the tacit
knowledge of programming to novices with natural language
tutoring. Computer Science Education, 15(3), 183-201

[11] Larson, J. (1986). Problem solving with generic algo-
rithms and computers.

[12] Lehrer, R., Lee, M., & Jeong, A. (1999). Reflective
Teaching of Logo. The Journal of the Learning Sciences, 8(2),
245-289.

[13] Mihci, C., & Ozdener, N. (2014). Programming education
with a blocks-based visual language for mobile application
development. International Association for the Development
of the Information Society.

[14] Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix,
J., & Pugh, W. (2008). "Using Static Analysis to Find Bugs,
IEEE Software, 25(5), 22-29.

[15] Olsen, A. L. (2005). Using pseudocode to teach problem
solving. Journal of Computing Sciences in Colleges, 21(2),
231-236.

[16] Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York: Basic books.

[17] Parham, J. R. A cognitive model for problem solving in
computer science.

[18] Roy, G. G. (2006). Designing and explaining programs
with a literate pseudocode. Journal on Educational Resources
in Computing, 6(1).

[19] Scanlan, D., & Clark, L. (1989). An empirical inves-
tigation of flowchart preference. Journal of Computers in
Mathematics and Science Teaching, 8(2), 56-64.

[20] Shum, S., & Cook, C. (1994). Using literate programming
to teach good programming practices. ACM SIGCSE Bulletin,
26(1), 66-70.

[21] Siozou, S., Tselios, N., & Komis, V. (2008). Effect of
algorithms’ multiple representations in the context of program-
ming education. Interactive Technology and Smart Education,
5(4), 230-243.

[22] Von Glasersfeld, E. (1989). Constructivism in Education.
The International Encyclopedia of Education, 162-163.

[23] Webb, N., Ender, P., & Lewis, S. (1986). Problem-
Solving Strategies and Group Processes in Small Groups
Learning Computer Programming. American Educational
Research Journal, 23(2), 243-261.

[24] Wyeth, P. (2008). How Young Children Learn to Program
with Sensor, Action, and Logic Blocks. The Journal of the
Learning Sciences, 17(4), 517-550.

	1.Introduction
	2. Background
	3. Design
	3.1. Features and Affordances
	3.2. Technical Construction

	4. Evaluation
	4.1. Design Iterations
	Reorganized the gameboard.
	Increased the block size.
	Simplified the compiler to a linear design.
	Generated textual pseudocode in real-time.

	5. Final Design Findings
	6. Conclusion & Future Work
	7. Acknowledgments
	References

